
RoadRunner Scenario
Reference

R2022b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

RoadRunner Scenario Reference
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)
September 2022 Online only Revised for Version 1.1 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Tools
1

Assets
2

Functions
3

Objects
4

Configurations
5

iii

Contents





Tools

1



Scenario Edit Tool
Add actors and paths, modify road anchors, and define scenario logic

Description
The Scenario Edit Tool enables the scenario and logic editing mode in RoadRunner Scenario. The
Scenario Edit Tool is selected by default when you open RoadRunner Scenario.

The Scenario Edit Tool enables you to perform these actions:

• Add vehicles as actors to the scenario. For more details on vehicles, see Vehicle Assets.
• Add or edit paths for actors to follow. For more details, see “Path Editing”.
• Move or modify the road anchors that determine how actors derive their positions from the scene.

For more details, see “Scenario Anchoring System”.
• Define the scenario logic for how actors interact with each other. For more details, see “Define

Scenario Logic”.
• Assign behavior assets to actors to determine what agent model the actors use during simulation.

For more details, see “Specify and Assign Actor Behaviors”.

Open the Scenario Edit Tool
On the RoadRunner Scenario toolbar, click the Scenario Edit Tool button:

Examples
• “Design Lane Following Scenario”
• “Design Lane Change Scenario”
• “Design Lane Swerve Scenario”
• “Design Path Following Scenario”

1 Tools

1-2



Version History
Introduced in R2022a

See Also
Simulation Tool | Vehicle Assets

Topics
“Design Lane Following Scenario”
“Design Lane Change Scenario”
“Design Lane Swerve Scenario”
“Design Path Following Scenario”

 Scenario Edit Tool

1-3



Simulation Tool
Simulate scenario

Description
The Simulation Tool enables you to simulate the scenarios you design using RoadRunner Scenario.
Using the controls in the Simulation pane, you can play back, pause, and restart a scenario. You can
also control the pacing and step size of the simulation. You can navigate the scenario quickly and
effectively using the different camera types during simulation.

Open the Simulation Tool
On the RoadRunner Scenario toolbar, click the Simulation Tool button:

When you click the Simulation Tool button, all actors and paths disappear from the scenario until
you start the simulation by clicking the Play button.

Examples

Simulate Scenario Using Simulation Tool

Open a prebuilt scenario, and then use the Simulation Tool to simulate the scenario.

From the File menu, select Open Scenario. Then, select the TrajectoryCutIn scenario, which is
one of the prebuilt scenarios included by default in the Scenarios folder of RoadRunner Scenario.

In this scenario, one vehicle cuts in front of another vehicle. The vehicles follow predefined paths.

1 Tools

1-4



On the RoadRunner Scenario toolbar, click the Simulation Tool .

In the Simulation pane, under Simulation Controls click Play to simulate the scenario.

The scenario locks for editing and the simulation plays back in the scenario editing canvas.

The Logic editor displays the status of the actions and conditions of the simulation. The colors
indicate the status of actions and conditions:

• Green — Completed actions and conditions
• Orange — Active actions and conditions
• Gray — Actions and conditions not started or not reached during simulation
• Green and Red — Actions or conditions interrupted during simulation.

 Simulation Tool

1-5



• Gray and Red — Actions or conditions skipped during simulation.

Let the scenario play until the simulation time ends, or click Stop to end the simulation early. The
Output pane displays the reason that the simulation ends. For example, if you stop the simulation
early, the Output pane displays a Stop simulation requested message.

Restart the scenario by pressing Play again, or by using the Ctrl+R keyboard shortcut. During this
simulation run, slow down the pace of the scenario by selecting Enable Pacing to Slow Down
Simulation. Use the slider to adjust the pace of the scenario.

Alternatively, you can step through the simulation by selecting Pause and then clicking Step
Forward.

1 Tools

1-6



Modifying the pacing does not change the results of the simulation. It changes only the rate at which
the simulation is displayed on the screen.

Resume scenario editing by selecting the Scenario Edit Tool  from the toolbar. This enables
scenario editing, and the actors revert back to their start positions.

You can visualize the scenario using different camera modes from the Simulation pane. Select a
Camera View from the drop-down menu. Next, select the Actor for the camera view. In this example,
the Camera View selected is Front and the Actor selected is Lead.

 Simulation Tool

1-7



Click Play to start the simulation. In this example, the camera is placed at the front of the lead
vehicle, the red sedan. This enables you to view the scenario from the front of the lead vehicle
throughout the simulation. For more details about camera controls, see “Camera Control in
RoadRunner Scenario”.

Limitations
• RoadRunner Scenario does not support simulation for very complex scenes. For example, a scene

in a dense urban environment with numerous props and complex roads may be supported up to a
size of 2000-by-2000 meters, whereas a scene in a more rural setting may support simulation up
to a size of 5000-by-5000 meters.

• Sporadic failures to connect can occur on Linux® (Ubuntu® 16) operating systems. This issue can
present itself as a failure to simulate, with the Output pane displaying Failure to Connect
errors. As a workaround, in your Linux environment, set the GRPC_DNS_RESOLVER environment
variable to native.

More About
Simulation End Conditions

When you create a new scenario, the Logic editor includes a default condition that causes the
scenario to end.

1 Tools

1-8



By default, a simulation ends when either one of these conditions is met:

• Any actor collides with any other actor.
• The simulation reaches its defined end condition.

You can modify or delete either of these conditions. If you delete the collision condition, then
collisions are not reported in the Output pane and actors appear to drive through each other during
simulation. If you delete the end condition, the simulation continues indefinitely.

Tips
• To quickly restart a scenario simulation, press Ctrl+R.
• The Output pane displays information about previously run simulations. Use this pane to debug

scenarios. For more details, see “Validate Scenarios”.

Version History
Introduced in R2022a

See Also
Scenario Edit Tool | Route Timing Tool

Topics
“Camera Control in RoadRunner Scenario”
Simulation Configuration
“Explore and Simulate a Simple Scenario”
“Validate Scenarios”
“Overview of Simulating RoadRunner Scenarios with MATLAB and Simulink” (Automated Driving
Toolbox)

 Simulation Tool

1-9



Route Timing Tool
Assign optional timing data to trajectories

Description
The Route Timing Tool enables you to assign or modify time and speed values of waypoints on a
trajectory. Using the Route Timing Tool, you can graphically visualize a selected trajectory in the
scenario.

When you click the Route Timing Tool button, the 2D Editor switches to the Timing Profile view.
You can edit the time and speed data of the trajectory by selecting points in the Timing Profile.
Alternatively, you can edit the time and speed values through the Attributes pane. Assigning optional
timing data to trajectories also enables exporting and importing timing data from ASAM
OpenSCENARIO®.

Open the Route Timing Tool
On the RoadRunner Scenario toolbar, click the Route Timing Tool button:

 .

Examples

Modify Trajectory Timing Data Using Route Timing Tool

Open a prebuilt scenario, and then use the Route Timing Tool to assign or modify time and speed
values of a trajectory.

From the File menu, select Open Scenario. Then, select the TrajectoryCutIn scenario, which is
one of the prebuilt scenarios included by default in the Scenarios folder of RoadRunner Scenario.

In this scenario, one vehicle cuts in front of another vehicle. The vehicles follow predefined paths.

1 Tools

1-10



In the scenario editing canvas, click the route of red sedan to select it. The selected route turns red
and two waypoints appear on the route.

On the RoadRunner Scenario toolbar, click the Route Timing Tool .

The 2D Editor pane switches to the Timing Profile view. The Timing Profile displays a grid where
the x- axis represents the time in seconds and the y- axis represents the distance of the waypoint in
meters. The purple hollow points indicate the waypoints in the selected route. The hollow points
indicate that the waypoints do not have time or speed data. You can edit time and speed data by
selecting these points.

 Route Timing Tool

1-11



Select the yellow waypoint in the editing canvas by clicking it. This highlights its corresponding point
in the Timing Profile. The green line on the purple point in the Timing Profile pane is the slope and
indicates the speed at the particular waypoint. Alternatively, you can view the time and speed data in
the Attributes pane by selecting Timing Data and Speed Data.

Customize the arrival time of the red sedan at the yellow waypoint by dragging the purple point
forward from the y- axis. The label near the red highlighted point in the Timing Profile pane
indicates that the modified arrival time is 10.98s. The same value appears in the Time field under

1 Tools

1-12



Timing Data in the Attributes pane. The slope at the red point is a straight line, indicating that the
speed of the red sedan at the yellow waypoint will be 0m/s.

Modifying the arrival time at the yellow waypoint modifies the arrival time at other waypoints
automatically by extrapolating those waypoints.

You can modify the speed of arrival of the red sedan at the yellow waypoint by selecting the slope in
the Timing Profile and adjusting it. This changes the speed value and the label next to the slope
indicates that the achieved slope is 19.53m/s. This modified value is also reflected in the Speed Data
in the Attributes pane.

Optionally, you can set a wait time for the red sedan by entering a value in the Wait Time field under
Time Data in the Attributes pane. As the wait time increase, the length of the flat section in the
Timing Profile pane also increases. When the simulation plays, the red sedan waits for 5.025s before
it drives to completion.

 Route Timing Tool

1-13



Version History
Introduced in R2022a

See Also
Scenario Edit Tool | Simulation Tool

Topics
“Design Lane Change Scenario”
“Explore and Simulate a Simple Scenario”
“Validate Scenarios”

1 Tools

1-14



Assets

2



Vehicle Assets
Define vehicles to add to driving scenarios

Description

Vehicle assets are the primary actors used to populate driving scenarios. By dragging vehicle assets
from the Vehicles folder of the Library Browser into the editing canvas, you can create dynamic
driving scenarios.

Creation
You can create new vehicle assets either from directly within the Library Browser or by importing
vehicles meshes created outside of RoadRunner into the Library Browser

Create Within Library Browser

From the Library Browser, select Vehicle folder. Right click in the Library Browser. Click New,
then Vehicle to create a new vehicle asset with extension .rrvehicle. The asset browser displays
this new vehicle as a cuboid shape.

2 Assets

2-2



You can then customize the attributes of the vehicle from the Attributes pane. For details on the
attributes you can customize, see the “Placeholder Vehicle Dimensions” on page 2-4 section.

Alternatively, you can create a new asset by duplicating an existing asset. From the Library
Browser, right click an existing vehicle asset and select Duplicate.

Note Asset duplication is not supported for assets created from external source files, such as FBX®

or texture files.

Create from Imported Vehicle Meshes

If you have vehicle meshes created outside of RoadRunner that you want to import into the Library
Browser, you can define them in such a way to make them compatible with scenarios. For more
details, see “Import Custom Vehicle Meshes”.

Parameters
Attributes by Vehicle Type

Vehicle assets in the Library Browser have attributes that are common across all assets of that type.
When you select a vehicle from the Library Browser, you can view these attributes in the Attributes
pane. These attributes are applied during scenario design and simulation but they are included in
exported ASAM OpenSCENARIO files. This table describes the attributes. The default value of each
attribute depends on the vehicle type.

Attribute Description
Category Category of vehicle, such as Bus, Car, Van, or

Truck.
Mass Mass of vehicle, in kilograms, specified as a

scalar in the range [0, 10,000).

 Vehicle Assets

2-3



Attribute Description
Max Speed Maximum speed of vehicle, in meters per second,

specified as a scalar in the range [0, 1,000).
Max Acceleration Maximum acceleration of vehicle, in meters per

second squared, specified as a scalar in the range
[0, 1,000).

Max Deceleration Maximum deceleration of vehicle, in meters per
second squared, specified as a scalar in the range
[0, 1,000).

Max Steering Angle Maximum steering angle of vehicle, in degrees,
specified as a scalar in the range [0, 100).

Placeholder Vehicle Dimensions

If you create new vehicles using the Create Within Library Browser procedure, then you can modify
additional attributes for the vehicle dimensions. You can modify these dimensions, select the vehicle
you created from the Library Browser and modify the attributes under Placeholder Vehicle
Dimensions. RoadRunner Scenario displays the updated dimensions in the asset viewer and in any
vehicles of this type added to the scenario. This table describes the placeholder vehicle dimensions.

Attribute Description
Width Width of vehicle, in meters, specified as a scalar

in the range [0.1, 20].

Default: 1.80 meters
Length Length of vehicle, in meters, specified as a scalar

in the range [0.1, 20].

Default: 4.70 meters

2 Assets

2-4



Attribute Description
Height Height of vehicle, in meters, specified as a scalar

in the range [0.1, 20].

Default: 1.40 meters
Front Overhang Front overhang of vehicle, in meters, specified as

a scalar in the range [0, x], where x is half the
Length of the vehicle. Front overhang is the
distance from the front axle to the front bumper
of the vehicle.

Default: 1.00 meters
Rear Overhang Rear overhang of vehicle, in meters, specified as

a scalar in the range [0, x], where x is half the
Length of the vehicle. Rear overhang is the
distance from the rear axle to the back bumper of
the vehicle.

Default: 0.90 meters

 Vehicle Assets

2-5



Attribute Description
Forward Offset Forward offset, in meters, of the vehicle from its

origin, specified as a scalar in the range [–x, x],
where x is half the Width of the vehicle. The
vehicle origin is on the ground, at the geometric
center of the vehicle.

Default: 0.00 meters
Body Height Gap Gap, in meters, between the vehicle body and the

center of its wheel axles, specified as a scalar in
the range [0, 10].

Default: 0.00 meters
Wheel Radius Radius of vehicle wheels, in meters, specified as a

scalar in the range []().

Default: 0.50 meters
Wheel Width Width of vehicle wheels, in meters, specified as a

scalar in the range [0.05, 0.9].

Default: 0.30 meters

2 Assets

2-6



Attribute Description
Wheel Inset Inset of wheels on vehicle, in meters, specified as

a scalar in the range [0, 5]. Wheel inset is the
distance between the outer edge of the wheel and
the outer edge of the vehicle.

Default: 0.05 meters

Vehicle-Specific Attributes

When you add a vehicle to a scenario, you can set attributes that are specific to that vehicle from the
Attributes pane. These sections describe the attributes you can set.

Vehicle

Attribute Description
Name Name of vehicle. In the Logic editor, this name

displays in the action phases that apply to that
vehicle.

Actor Id Unique id for the actor. You can modify the actor
id by incrementing or decrementing its value in
the Attributes pane.

Color Color of vehicle. To change a vehicle color, select
the current color from the Color attribute box
and set the color in the Set Color dialog box.

Vehicle Type Asset type used to display the vehicle in the
scenario. To select a new asset type for the
selected vehicle, drag a vehicle asset from the
Attributes pane onto the Vehicle Type attribute
box.

Behavior Driving behavior of vehicle. If you do not specify
a behavior, then the vehicle either follows its lane
or drives along its specified driving path during
simulation. To specify a vehicle behavior, drag a
behavior asset from the Library Browser onto
the Behavior attribute box.

You can specify behaviors defined in RoadRunner,
in MATLAB® or Simulink®, or in external
simulators such as CARLA. For more details, see
“Specify and Assign Actor Behaviors”.

 Vehicle Assets

2-7



Connection Attributes

Use these attributes to connect vehicles together, such as a trailer connected to a truck.

Attribute Description
Parent Attachment Parent vehicle for the current vehicle. When you

assign a parent vehicle, the Attributes pane
changes to show the “Connection Attributes” on
page 2-12.

Point Offsets

Using these attributes, you can specify the vehicle relative to a specific point in the scenario, such as
a road anchor, path waypoint, or to another vehicle.

Attribute Description
Enable Anchoring Enable vehicle to anchor to another point. By

default, this attribute is enabled.
Position Position of vehicle within the scene. Specify the

(x,y,z) position of the vehicle by using the enabled
X, Y, and Z parameters. Units are in meters. The
position is relative to the center of the scene.

This parameter is only available if Enable
Anchoring attribute is disabled.

Anchor Anchor point that the vehicle is offset from. An
anchor point can be a road anchor, path
waypoint, or another vehicle.

To select an anchor point, first click the attribute
box. Then, select an anchor point from the
scenario editing canvas or the Logic editor.
RoadRunner outlines these selection areas with
blue lines. To frame the camera around the
current anchor point in the scenario, click the

Frame object in the scene button .
Lock To Anchor Lock the vehicle to its current anchor no matter

where you drag it within the scenario. If you do
not select this attribute, then the vehicle locks to
new road anchors as you drag it onto different
roads. By default, this attribute is not selected.

Forward Offset Distance, in meters, that the vehicle is in front of
its anchor point.

2 Assets

2-8



Attribute Description
Manual Reference Line Reference line that the forward offset of the

vehicle from its anchor point is measured from,
specified as Front (measure from front bumper),
Middle (measure from vehicle center) or Back
(measure from back bumper). These images show
the different reference lines, where the vehicle
has a Forward Offset of 0 meters from the road
anchor.

• Front

• Middle

• Back

 Vehicle Assets

2-9



Attribute Description

Lane Offset

Using these attributes, you can place vehicles relative to the road edge and relative to the lane they
are in.

When specifying lane offsets, keep these points in mind:

• Lane offsets can be relative to the road edge only (Relative To = Road Edge) attribute. You
cannot offset vehicles from the lanes that other vehicles are in.

• Lateral offsets within a lane (Lateral Offset attribute) are positive to the right of the vehicle, as
shown by this figure.

These sample attributes show the key values that you can set.

2 Assets

2-10



Attributes Description
Relative To — Road Edge

Offset From — Left Lane

Direction — 2 lane(s)

Travel Direction — With Road Anchor

Lateral Offset — 1.5 meters

Set vehicle two lanes from the left road edge,
traveling in the same direction as the road
anchor. Offset the vehicle 1.5 meters to the right
within its lane.

 Vehicle Assets

2-11



Attributes Description
Relative To — Road Edge

Offset From — Right Lane

Direction — 0 lane(s)

Travel Direction — Against Road Anchor

Lateral Offset — -1.5 meters

Set vehicle in the lane along the left road edge,
traveling in the opposite direction of the road
anchor. Offset the vehicle 1.5 meters to the left
within its lane.

Connection Attributes

When you connect a vehicle to another vehicle as a trailer, you can set attributes that are specific to
that trailer from the Attributes pane. These sections describe the attributes you can set.

Note The connection attributes only become available when the vehicle gets attached to a parent
vehicle and becomes a trailer.

Connection Attributes

Use these attributes to connect vehicles together, such as trailer connected to a truck.

Attribute Description
Parent Attachment Name of the parent vehicle that the current

vehicle attaches to.

2 Assets

2-12



Attribute Description
Type Specify the behavior of the trailer relative to the

parent. Select trailer to allow the trailer to
move and use independent dynamics relative to
the parent vehicle. Select fixed to lock the
trailer rotation to the dynamics of the parent
vehicle.

Attachment Point

Use these attributes to edit the attachment point with respect to the selected vehicle, and the
Parent Attachment point.

Attribute Description
Source Generate an attachment point from the bounding

box geometry of the vehicle, select Computed
from Geometry. To use an attachment point
defined in the FBX file, select Imported from
File.

Point Name When the Source attribute value is Imported
from File, this attribute specifies the label of
the point in the FBX file. The name of the node in
the FBX file must either be hitch or start with
attach to appear as an option for the Point
Name attribute.

When the Source attribute value is Computed
from Geometry, this attribute specifies the
point in bounding box geometry.

Parent Attachment Point

Attribute Description
Source Specify the attachment point on the parent

vehicle. To generate an attachment point from
the vehicle's bounding box geometry, select
Computed from Geometry. To use an
attachment point defined in the FBX file, select
Imported from File.

Point Name When the Source attribute value is Imported
from File, this attribute specifies the label of
the point in the FBX file. The name of the node in
the FBX file must either be hitch or start with
attach to appear as an option for the Point
Name attribute.

When the Source attribute value is Computed
from Geometry, this attribute specifies the
point in bounding box geometry.

 Vehicle Assets

2-13



Attribute Description
Offset Right Horizontal offset, in meters, of the vehicle

relative to the parent attachment point in the
direction of travel. Default offset right is 0.0
meters.

Offset Forward Horizontal offset, in meters, of the vehicle
relative to the parent attachment point in the
direction of travel. Default offset height is 0.0
meters.

Offset Up Vertical offset, in meters, of the vehicle relative to
the parent attachment point in the direction of
travel. Default offset height is 0.0 meters.

Use these attributes to specify the trailer direction to the parent attachment point.

Attribute Description
Heading Horizontal direction, in degrees, of the trailer

relative to the parent attachment point. Default
offset heading is 0.0 degrees.

When you select a trailer, you can also modify the
Heading value the editor using the direction
widget, shown in this image, when the trailer is
selected.

Slope Slope or pitch, in degrees, of the trailer relative
to the parent attachment point.

Examples
Add Vehicles to Scenario

When you switch the scenario editing mode, RoadRunner Scenario opens the Library Browser to the
Vehicles folder. This folder includes a Sedan asset. Drag this asset into the scenario.

2 Assets

2-14



By default, assets snap to the center of lanes along road networks. The origin of vehicle is located on
the ground below its geometric center.

 Vehicle Assets

2-15



If you have the RoadRunner Asset Library, then the Vehicles folder includes a variety of additional
vehicle assets that you can add to the scenario.

You can then modify the appearance or behavior of vehicles from the Attributes pane. For more
details, see the Parameters on page 2-3 section.

To control how the vehicle moves in the scenario, you can choose one of the following actions:

• Set a driving path for a vehicle. For more details, see “Path Editing”. For an example, see “Design
Path Following Scenario”.

• Use the built-in behavior of the vehicle. By default, vehicles follow their current lane. For more
details, see “Built-In Behavior for Vehicles”. For an example, see “Design Lane Following
Scenario”.

• Specify a custom behavior for the vehicle and add this behavior asset to the Behavior attribute of
the vehicle. For more details, see “Specify and Assign Actor Behaviors”.

Limitations
• In scene editing mode, if you add vehicle assets in the Vehicles folder into a scene, the vehicle is

treated as part of the scene. In scenario editing mode, you cannot edit or simulate with this
vehicle.

• Vehicle assets in the Vehicles folder of projects created in R2021b or earlier are treated only as
prop assets and you cannot simulate scenarios with them. As a workaround, create a new project
and in your scenario, use the vehicle assets in the Vehicles folder of the Library Browser.
Alternatively, copy the Vehicles folder from a new project into the Library Browser of your
existing project.

Tips
You can set vehicle colors, asset types, and other attributes as variables, which you can then modify
programmatically. Using this technique, you can generation variations of scenarios with different
vehicles. For more details, see “Generate Scenario Variations Using gRPC API”.

2 Assets

2-16

https://www.mathworks.com/products/roadrunner-asset-library.html


See Also
Topics
“Explore and Simulate a Simple Scenario”
“Design Lane Following Scenario”
“Design Path Following Scenario”
“Built-In Behavior for Vehicles”
“Specify and Assign Actor Behaviors”
“Define Scenario Logic”
“Scenario Anchoring System”
“Path Editing”
“Design Vehicle with Trailer Scenario”

 Vehicle Assets

2-17



Character Assets
Define characters or pedestrians to add to driving scenarios

Description
Character assets are secondary actors used to populate driving scenarios. By dragging pedestrian
assets from the Characters folder of the Library Browser into the editing canvas, you can create
dynamic driving scenarios with pedestrians.

Characters use the same tools to specify their path behavior within a scene as vehicles. For more
information on specifying path behaviors, see “Path Editing”.

Creation
You can create new character assets either from directly within the Library Browser or by importing
character meshes created outside of RoadRunner into the Library Browser

Create Within Library Browser

From the Library Browser, select the Characters folder. Right-click in the Library Browser and,
from the context menu, select New, then Character to create a new character asset with the
extension .rrchar.rrmeta. The asset browser displays this new character as a cuboid shape.

2 Assets

2-18



You can then customize the attributes of the character from the Attributes pane. For details on the
attributes you can customize, see “Placeholder Character Dimensions” on page 2-20.

Create from Imported Character Meshes

To import character meshes created outside of RoadRunner into the Library Browser, you must
define them in such a way as to make them compatible with scenarios. For more details, see “Import
Custom Character Meshes”.

 Character Assets

2-19



Parameters
Attributes by Character Type

Character assets in the Library Browser have attributes that are common across all assets of that
type. When you select a character from the Library Browser, you can view these attributes in the
Attributes pane. These attributes are applied during scenario design and simulation, and they are
included in exported ASAM OpenSCENARIO files. This table describes the attributes. The default
value of each attribute depends on the character type.

Attribute Description
Category Category of character, such as Pedestrian,

Animal, or Wheelchair.
Skin FBX file containing the mesh and skeletal rig.
Skeleton FBX file containing the mesh and skeletal rig.
Idle Animation FBX file containing an idle animation generated

from the skeletal rig in the Skeleton attribute.
Walk Animation FBX file containing a walking animation

generated from the skeletal rig in the Skeleton
attribute.

Run Animation FBX file containing a running animation
generated from the skeletal rig in the Skeleton
attribute.

Placeholder Character Dimensions

If you create new pedestrians within the Library Browser, then you can modify additional attributes
for the pedestrian dimensions. To modify these dimensions, select the character you created in the
Library Browser and modify the attributes under Placeholder Character Dimensions.
RoadRunner Scenario displays the updated dimensions in the asset viewer and in any vehicles of this
type added to the scenario. This table describes the placeholder vehicle dimensions.

2 Assets

2-20



Attribute Description
Width Width of the character, in meters, specified as a

scalar in the range [0.1, 20].

Default: 0.50 meters
Length Length of the character, in meters, specified as a

scalar in the range [0.1, 20].

Default: 0.50 meters

 Character Assets

2-21



Attribute Description
Height Height of the character, in meters, specified as a

scalar in the range [0.1, 20].

Default: 1.70 meters

Character-Specific Attributes

When you add a character to a scenario, you can set attributes that are specific to that character in
the Attributes pane. These tables describe the attributes you can set.

Character

Attribute Description
Name Name of the character. In the Logic editor, this

name displays in the action phases that apply to
that character.

Actor Id Unique ID for the actor. You can modify the actor
ID by changing its value in the Attributes pane.

Color Color of character. To change a character color,
select the current color from the Color attribute
box and set the color in the Set Color dialog box.
This applies to only the Placeholder Pedestrian
character.

Character Type Asset type used to display the character in the
scenario. To select a new asset type for the
selected character, drag a character asset from
the Attributes pane onto the Character Type
attribute box.

2 Assets

2-22



Attribute Description
Behavior Behavior of the character. If you do not specify a

behavior, then the character either follows its
lane or moves along its specified path during
simulation. To specify a character behavior, drag
a behavior asset from the Library Browser onto
the Behavior attribute box.

You can specify behaviors defined in RoadRunner,
in MATLAB or Simulink, or in external simulators
such as CARLA. For more details, see “Specify
and Assign Actor Behaviors”.

Point Offsets

Using these attributes, you can specify the character relative to a specific point in the scenario, such
as a road anchor, path waypoint, vehicle, or another character.

Attribute Description
Enable Anchoring Enable character to anchor to another point. By

default, this attribute is enabled.
Position Position of character within the scene. Specify

the xyz-position of the character by using the X,
Y, and Z attributes. Units are in meters. The
position is relative to the center of the scene.

To enable this attribute, you must clear the
Enable Anchoring attribute.

Anchor Anchor point that the character is offset from. An
anchor point can be a road anchor, path
waypoint, vehicle, or another character.

To select an anchor point, first click the attribute
box. Then select an anchor point from the
scenario editing canvas or the Logic editor.
RoadRunner outlines these selection areas with
blue lines. To frame the camera around the
current anchor point in the scenario, click the

Frame object in the scene button .
Lock To Anchor Lock the character to its current anchor no

matter where you drag it within the scenario. If
you do not select this attribute, then the
character locks to new road anchors as you drag
it onto different roads. By default, this attribute is
not selected.

Forward Offset Distance, in meters, that the character is in front
of its anchor point.

 Character Assets

2-23



Attribute Description
Reference Line Reference line from which to measure the

forward offset of the character from its anchor
point, specified as Front, Middle, or Back.
These images show the different reference lines,
where the vehicle has a Forward Offset of 0
meters from the road anchor.

• Front

• Middle

2 Assets

2-24



Attribute Description
• Back

Lane Offset

Using these attributes, you can place a character relative to the road edge and relative to the lane
they are in.

When specifying lane offsets, keep these points in mind:

• Lane offsets can be relative to the road edge only (Relative To attribute value must be Road
Edge) attribute. You cannot offset characters from the lanes that other characters or vehicles are
in.

• Lateral offsets within a lane (Lateral Offset attribute) are positive to the right of the character.

These sample attributes show the key values that you can set.

 Character Assets

2-25



Attributes Description
Relative To — Road Edge

Offset From — Left Lane

Lane Offset — 0 lane(s)

Travel Direction — With Road Anchor

Lateral Offset — 1.5 meters

Direction — To the right

Set character traveling in the same direction as
the road anchor. Offset the character 1.5 meters
to the right from the lane.

2 Assets

2-26



Attributes Description
Relative To — Road Edge

Offset From — Right Lane

Lane Offset — 0 lane(s)

Travel Direction — Against Road Anchor

Lateral Offset — -1.5 meters

Direction — To the right

Set character in the lane along the left road edge,
traveling in the opposite direction of the road
anchor. Offset the character 1.5 meters to the left
within the lane.

Version History
Introduced in R2022b

See Also
Vehicle Assets

Topics
“Import Custom Character Meshes”

 Character Assets

2-27



“Path Editing”

2 Assets

2-28



Functions

3



NewScenario
Create new RoadRunner scenario using gRPC

Description
The NewScenario method creates a new scenario in the current RoadRunner scene. If RoadRunner
has no current scene loaded, then the NewScenario method call fails.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC®

compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
NewScenarioRequest — New scenario request
empty message

New scenario request, specified as an empty message.

Response
NewScenarioResponse — New scenario response
empty message

New scenario response, returned as an empty message.

Sample Calls
Command Line

Create a new scenario in the project located at C:\RR\MyProject.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "NewScenario()"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”
• “Export Multiple Scenarios Using gRPC API”

Python

Create a new scenario in the current scene.

3 Functions

3-2



newScenarioRequest = roadrunner_service_messages_pb2.NewScenarioRequest()
api.NewScenario(newScenarioRequest)

This sample call is a snippet of a Python® client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

C++

Create a new scenario in the current scene.

NewScenarioRequest request;
ClientContext context;
NewScenarioResponse reply;
Status status = api->NewScenario(&context, request, &reply);

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene |
LoadScenario | SaveScenario | SetScenarioVariable | PrepareSimulation |
SimulateScenario | Export | Import | Exit | roadrunner_service.proto |
roadrunner_service_messages.proto

Topics
“Control RoadRunner Programmatically Using gRPC API”

 NewScenario

3-3



LoadScenario
Load RoadRunner scenario using gRPC

Description
The LoadScenario method loads a specified scenario from the current RoadRunner project. If the
scenario that you specify does not belong to the current project, then RoadRunner determines what
project the scenario belongs to and loads it from that project instead.

If the scenario was previously saved with the current scene, or if you enable the
keep_current_scene option, then the scenario loads into the current scene. Otherwise,
RoadRunner loads the scene that the scenario was previously saved with and loads the scenario into
that scene.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC
compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
LoadScenarioRequest — Load scenario request
message

Load scenario request, specified as a message with these fields

Name Type Description
file_path (required) string Absolute or relative path to the

scenario file to load. If you
specify a relative path, then the
path is relative to the
Scenarios folder of the
current project.

The file name specified for
file_path must either end
with the .rrscenario
extension or have no extension.
If the input has no extension,
then RoadRunner appends
the .rrscenario extension to
the specified value before
loading the scenario.

3 Functions

3-4



Name Type Description
keep_current_scene
(optional)

bool Option to load the scenario into
the current scene. If you set
keep_current_scene to true
and there is no current scene,
the LoadScenario method call
fails.

If you set
keep_current_scene to
false, then RoadRunner loads
the scene that the scenario was
previously saved with and loads
the scenario into that scene.

Default: false

Response
LoadScenarioResponse — Load scenario response
empty message

Load scenario response, returned as an empty message.

Sample Calls
Command Line

Load the prebuilt TrajectoryCutIn scenario from the project located at C:\RR\MyProject.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "LoadScenario(file_path='TrajectoryCutIn')"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”
• “Export Multiple Scenarios Using gRPC API”

Python

Load the prebuilt TrajectoryCutIn scenario from the current project.

loadScenarioRequest = roadrunner_service_messages_pb2.LoadScenarioRequest()
loadScenarioRequest.file_path = "TrajectoryCutIn"
api.LoadScenario(loadScenarioRequest)

This sample call is a snippet of a Python client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

 LoadScenario

3-5



C++

Load the prebuilt TrajectoryCutIn scenario from the current project.

LoadScenarioRequest request;
std::string filePath = "TrajectoryCutIn";
request.set_file_path(filePath);
ClientContext context;
LoadScenarioResponse reply;
Status status = api->LoadScenario(&context, request, &reply);

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene | NewScenario
| SaveScenario | SetScenarioVariable | PrepareSimulation | SimulateScenario | Export
| Import | Exit | roadrunner_service.proto | roadrunner_service_messages.proto

Topics
“Control RoadRunner Programmatically Using gRPC API”

3 Functions

3-6



SaveScenario
Save RoadRunner scenario using gRPC

Description
The SaveScenario method saves a specified RoadRunner scenario. RoadRunner also saves the
current scene and project.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC
compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
SaveScenarioRequest — Save scenario request
message

Save scenario request, specified as a message with this field.

 SaveScenario

3-7



Name Type Description
file_path (optional) string Absolute or relative path to the

scenario file to save. If you
specify a relative path, then the
path is relative to the
Scenarios folder of the
current project.

RoadRunner saves the scenario
to the path specified by
file_path. If you do not
specify file_path, then
RoadRunner saves the current
scenario. If you do not have a
current scenario loaded or have
not previously saved the current
scenario, then RoadRunner
returns an error.

RoadRunner recursively creates
any folders missing from the file
path.

The file name specified for
file_path must either end
with the .rrscenario
extension or have no extension.
If the input has no extension,
then RoadRunner appends
the .rrscenario extension to
the specified value before
loading the scenario.

Response
SaveScenarioResponse — Save scenario response
empty message

Save scenario response, returned as an empty message.

Sample Calls
Command Line

Save the current scenario to the Scenarios folder of project C:\RR\MyProject and name the
scenario MyScenario.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "SaveScenario(file_path='MyScenario')"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

3 Functions

3-8



• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”
• “Export Multiple Scenarios Using gRPC API”

Python

Save the current scenario to the Scenarios folder of the current project and name the scenario
MyScenario.

saveScenarioRequest = roadrunner_service_messages_pb2.SaveScenarioRequest()
saveScenarioRequest.file_path = "MyScenario"
api.SaveScenario(saveScenarioRequest)

This sample call is a snippet of a Python client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

C++

Save the current scenario to the Scenarios folder of the current project and name the scenario
MyScenario.

SaveScenarioRequest request;
std::string filePath = "MyScenario";
request.set_file_path(filePath);
ClientContext context;
SaveScenarioResponse reply;
Status status = api->SaveScenario(&context, request, &reply);

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene | NewScenario
| LoadScenario | SetScenarioVariable | PrepareSimulation | SimulateScenario | Export
| Import | Exit | roadrunner_service.proto | roadrunner_service_messages.proto

Topics
“Control RoadRunner Programmatically Using gRPC API”

 SaveScenario

3-9



GetScenarioVariable
Get RoadRunner Scenario variable using gRPC

Description
The GetScenarioVariable method gets the value of a specified variable in the current scenario.
Variables that you can get are in the Variables table of the scenario. For more details on defining
scenario variables, see “Generate Scenario Variations Using gRPC API”.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC
compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
GetVariableRequest — Get variable request
message

Get variable request, specified as a message with this field.

Name Type Description
name (required) string Name of the variable to set.

Response
GetVariableResponse — Get variable response
string

Get variable response, returned as a string of the variable value.

Sample Calls
Command Line

Get the Vehicle1_InitialSpeed variable value in a scenario named MyScenario. The scenario is
located in the project C:\RR\MyProject.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "LoadScenario(file_path='MyScenario')"
CmdRoadRunnerApi "GetScenarioVariable(name='Vehicle1_InitialSpeed')"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

3 Functions

3-10



• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”
• “Export Multiple Scenarios Using gRPC API”

Python

Get the Vehicle1_InitialSpeed variable value in the current scenario.

getVariableRequest = roadrunner_service_messages_pb2.GetVariableRequest()
getVariableRequest.name = "Vehicle1_InitialSpeed"
response = api.GetScenarioVariable(getVariableRequest)
print(response.value)

This sample call is a snippet of a Python client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

C++

Get the Vehicle1_InitialSpeed variable value in the current scenario.

GetVariableRequest request;
std::string name = "Vehicle1_InitialSpeed";
request.get_name(name);
ClientContext context;
GetVariableResponse response;
Status status = api->Import(&context, request, &response);
std::cout << response.value() << std::endl;

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene | NewScenario
| LoadScenario | SaveScenario | PrepareSimulation | SimulateScenario | Export | Import
| Exit | roadrunner_service.proto | roadrunner_service_messages.proto

Topics
“Control RoadRunner Programmatically Using gRPC API”

 GetScenarioVariable

3-11



SetScenarioVariable
Set RoadRunner scenario variable using gRPC

Description
The SetScenarioVariable method sets a specified variable in the current scenario to the specified
value. Variables that you can set are in the Variables table of the scenario. For more details on
defining scenario variables, see “Generate Scenario Variations Using gRPC API”.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC
compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
SetVariableRequest — Set variable request
message

Set variable request, specified as a message with these fields.

Name Type Description
name (required) string Name of the variable to set.
value (required) string New value to assign to the

variable. Even if the variable
value is numeric, you must
specify value as a string.

Response
SetVariableResponse — Set variable response
empty message

Set variable response, returned as an empty message.

Sample Calls
Command Line

Set the Vehicle1_InitialSpeed variable in a scenario named MyScenario to 10. The scenario is
located in the project C:\RR\MyProject.

3 Functions

3-12



cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "LoadScenario(file_path='MyScenario')"
CmdRoadRunnerApi "SetScenarioVariable(name='Vehicle1_InitialSpeed' value='10')"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”
• “Export Multiple Scenarios Using gRPC API”

Python

Set the Vehicle1_InitialSpeed variable in the current scenario to 10.

setVariableRequest = roadrunner_service_messages_pb2.SetVariableRequest()
setVariableRequest.name = "Vehicle1_InitialSpeed"
setVariableRequest.value = "10"
api.SetScenarioVariable(setVariableRequest)

This sample call is a snippet of a Python client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

C++

Set the Vehicle1_InitialSpeed variable in the current scenario to 10.

SetVariableRequest request;
std::string name = "Vehicle1_InitialSpeed";
request.set_name(name);
string value = "10";
request.set_value(value);
ClientContext context;
SetVariableResponse reply;
Status status = api->Import(&context, request, &reply);

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene | NewScenario
| LoadScenario | SaveScenario | PrepareSimulation | SimulateScenario | Export | Import
| Exit | roadrunner_service.proto | roadrunner_service_messages.proto

 SetScenarioVariable

3-13



Topics
“Control RoadRunner Programmatically Using gRPC API”

3 Functions

3-14



PrepareSimulation
Prepare RoadRunner simulation for scenario simulation engine using gRPC

Description
The PrepareSimulation method submits simulation data, such as the scenario and map definitions,
to the scenario simulation engine (SSE). Call this method to make the simulation data available to be
queried from MATLAB or Simulink, or from external simulators such as CARLA, without having to
simulate the scenario.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC
compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
PrepareSimulationRequest — Prepare simulation request
empty message

Prepare simulation request, specified as an empty message.

Response
PrepareSimulationResponse — Prepare simulation response
empty message

Prepare simulation response, returned as an empty message.

Sample Calls
Command Line

Prepare simulation data in the current scenario for use with the SSE. The scenario is located in the
project C:\RR\MyProject.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "PrepareSimulation()"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”

 PrepareSimulation

3-15



• “Export Multiple Scenarios Using gRPC API”

Python

Prepare simulation data in the current scenario for use with the SSE.

prepareSimulationRequest = roadrunner_service_messages_pb2.PrepareSimulationRequest()
api.PrepareSimulation(prepareSimulationRequest)

This sample call is a snippet of a Python client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

C++

Prepare simulation data in the current scenario for use with the SSE.

PrepareSimulationRequest request;
ClientContext context;
PrepareSimulationResponse reply;
Status status = api->PrepareSimulation(&context, request, &reply);

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene | NewScenario
| LoadScenario | SaveScenario | SetScenarioVariable | SimulateScenario | Export |
Import | Exit | roadrunner_service.proto | roadrunner_service_messages.proto

Topics
“Control RoadRunner Programmatically Using gRPC API”

3 Functions

3-16



SimulateScenario
Simulate RoadRunner scenario using gRPC

Description
The SimulateScenario method simulates the current scenario. By default, all other calls to the
RoadRunner application are blocked until the simulation is over.

This RoadRunner API method is a remote procedure call (RPC) that sends a single message to the
RoadRunner API service and receives a single message back as a response. The protocol buffer
(protobuf) file roadrunner_service.proto defines the schema for this method. Using a gRPC
compiler, you can compile the RoadRunner protobuf files into a language supported by gRPC and
create client applications to call this method in that language. For more details, see “Compile
Protocol Buffers for RoadRunner gRPC API”. For background information on how the RoadRunner
API works, see “Control RoadRunner Programmatically Using gRPC API”.

Request
SimulateScenarioRequest — Simulate scenario request
message

Simulate scenario request, specified as a message with these fields.

Name Type Description
pacing (optional) google.protobuf.DoubleVa

lue
Simulation pacing to control
how fast the simulation runs,
specified as a nonnegative
number.

• A value between 0 and 1 is
slower than real time.

• A value of 1 equates to real
time.

• A value greater than 1 is
faster than real time.

If you omit this value, then the
simulation runs as fast as
possible, given the performance
of the CPU and the complexity
of the scenario.

 SimulateScenario

3-17

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.DoubleValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.DoubleValue


Name Type Description
simulation_end_time
(optional)

google.protobuf.DoubleVa
lue

Maximum amount of time, in
seconds, that the simulation
runs. The simulation ends when
it reaches
simulation_end_time, if it
does not stop earlier. If you omit
this value, then the simulation
runs until it stops for another
reason, such as if an end
condition is met, a collision
occurs, or you manually stop the
simulation.

blocking (optional) google.protobuf.BoolValu
e

Option to block calls to the
RoadRunner application during
simulation. If true, then calls to
RoadRunner are blocked until
the simulation ends. If false, you
can make calls to the
RoadRunner application
immediately after starting the
simulation.

Default: true

Response
SimulateScenarioResponse — Simulate scenario response
empty message

Simulate scenario response, returned as an empty message.

Sample Calls
Command Line

Simulate the current scenario and slow down the simulation to 50% of real-time speed. The scenario
is located in the project C:\RR\MyProject.

cd "C:\Program Files\RoadRunner R2022b\bin\win64"
AppRoadRunner --projectPath C:\RR\MyProject
CmdRoadRunnerApi "SimulateScenario(pacing.value='0.5')"

This sample call uses the CmdRoadRunnerApi helper command, which is a precompiled version of
the RoadRunner API service. For examples that use this command, see:

• “Generate Scenario Variations Using gRPC API”
• “Reuse Scenarios in Multiple Scenes Using gRPC API”
• “Export Multiple Scenarios Using gRPC API”

3 Functions

3-18

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.DoubleValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.DoubleValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.BoolValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.BoolValue


Python

Simulate the current scenario and slow down the simulation to 50% of real-time speed.

simulateScenarioRequest = roadrunner_service_messages_pb2.SimulateScenarioRequest()
simulateScenarioRequest.pacing.value = 0.5
api.SimulateScenario(simulateScenarioRequest)

This sample call is a snippet of a Python client. For details on creating complete Python clients, see
“Create gRPC Python Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a Python stub of the RoadRunner service API. For details on generating
these stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

C++

Simulate the current scenario and slow down the simulation to 50% of real-time speed.

SimulateScenarioRequest request;
request.mutable_pacing()->set_value(0.5);
ClientContext context;
SimulateScenarioResponse reply;
Status status = api->SimulateScenario(&context, request, &reply);

This sample call is a snippet of a C++ client. For details on creating complete C++ clients, see
“Create gRPC C++ Client for Controlling RoadRunner Programmatically”.

In this sample call, api is a C++ stub of the RoadRunner service API. For details on generating these
stubs, see “Compile Protocol Buffers for RoadRunner gRPC API”.

Version History
Introduced in R2022a

See Also
NewProject | LoadProject | SaveProject | NewScene | LoadScene | SaveScene | NewScenario
| LoadScenario | SaveScenario | SetScenarioVariable | PrepareSimulation | Export |
Import | Exit | roadrunner_service.proto | roadrunner_service_messages.proto

Topics
“Control RoadRunner Programmatically Using gRPC API”

 SimulateScenario

3-19





Objects

4



createSimulation
Create RoadRunner Scenario simulation using MATLAB

Syntax
rrSim = createSimulation(rrApp)

Description
rrSim = createSimulation(rrApp) creates and returns a scenario simulation object for the
current scenario.

Examples

Create Scenario Simulation

Create a scenario simulation object in RoadRunner Scenario using MATLAB.

Call the roadrunner function and pass in the location where you want to create the project. This
example assumes that RoadRunner is installed in its default location in Windows.

Specify the path to an existing project. For example, this code shows the path to a project located at
"C:\RR\MyProject". This call returns an object rrApp that provides functions for performing basic
workflow tasks such as opening, closing, and saving scenes and projects

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open an existing scenario in RoadRunner Scenario by calling the openScenario function and
passing it the rrApp object and the specific scenario filename that you want to open. This call
opens the desired scenario in the RoadRunner Scenario application through MATLAB.

filename = "MyScenario.rrscenario";
openScenario(rrApp,filename);

Create a scenario simulation object by calling the createSimulation function and passing it the
rrApp object. This call returns a simulation object rrSim for the current scenario, through which you
can control the simulation programatically.

rrSim = createSimulation(rrApp);

Connection status: 1
Connected to RoadRunner Scenario server on localhost:61720, with client id {fb457314-9501-4395-af0d-5a51912f14f9}

Input Arguments
rrApp — RoadRunner application
roadrunner object

4 Objects

4-2



RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

Output Arguments
rrSim — RoadRunner Scenario simulation object
Simulink.ScenarioSimulation object

RoadRunner Scenario simulation object, specified as a Simulink.ScenarioSimulation object.
This object enables you to control a simulation, access and modify the runtime parameters of a
simulation, and report custom diagnostic messages during a simulation.

Version History
Introduced in R2022a

See Also
roadrunner | Simulink.ScenarioSimulation | getScenarioVariable |
setScenarioVariable | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

 createSimulation

4-3



exportScenario
Export scenario from RoadRunner Scenario using MATLAB

Syntax
exportScenario(rrApp,filename,formatname)
exportScenario(rrApp,filename,formatname,exportoptions)

Description
exportScenario(rrApp,filename,formatname) exports a scenario file to one of the file formats
that RoadRunner supports.

exportScenario(rrApp,filename,formatname,exportoptions) sets options for export using
exportoptions. The export options configuration is specified as one of the export options objects
compatible with the format name specified in the formatname argument. You can export only ASAM
OpenSCENARIO files.

Examples

Export Scenario

Export a scenario from RoadRunner Scenario using MATLAB.

Call the roadrunner function and pass in the location where you want to create the project. This
example assumes that RoadRunner is installed in its default location in Windows.

Specify the path to an existing project. For example, this code shows the path to a project located at
"C:\RR\MyProject". This call returns an object rrApp that provides functions for performing basic
workflow tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open a scenario in the project by calling the openScenario function. You must pass the rrApp
object and the RoadRunner scenario you wish to open as input arguments while calling the
openScenario function. This example uses the 'FourWaySignal.rrscenario' scenario, which is
one of the scenario included by default in RoadRunner projects and is located in the Scenarios
folder of the project.

scenarioname = "MyScenario.rrscenario";
openScenario(rrApp,scenarioname);

Before exporting the file, set export options by creating an openScenarioExportOptions object to
enable export of signals and objects from the file.

options = openScenarioExportOptions(OpenDriveOptions=openDriveExportOptions(OpenDriveVersion = 1.5,ExportSignals = true,ExportObjects = true));

4 Objects

4-4



Once the scenario opens successfully, call the exportScenario function to export the scenario to
ASAM OpenSCENARIO®. Pass rrApp, the scenario filename of the scenario, the export format, and
the export options as input arguments to the function.

filename = "FourWaySignal.xosc";
formatname = "OpenSCENARIO";
exportScenario(rrApp,filename,formatname,options);

Input Arguments
rrApp — RoadRunner application
roadrunner object

RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

filename — File path to the exported file
character vector | string scalar

File path to the exported file, specified as a character vector or string scalar. filename is absolute or
relative to the exported file. If you specify a relative path, then the exported file is saved relative to
the Exports folder of the current project. If any folders in the path are missing, RoadRunner tries to
create them. filename can include the extension for the exported file or have no extension. If it has
no extension, then RoadRunner appends the extension of the format specified by the formatname to
the file name before exporting the scenario.
Example: While calling
exportScenario(rrApp,"FourWaySignal.xosc","OpenSCENARIO",options),
"FourWaySignal.xosc" represents the file name of the exported file, which is relative to the
Exports folder of the current project.
Data Types: char | string

formatname — Export format name
character vector | string scalar

Export format name, specified as a character vector or string scalar. This argument specifies the
export format name corresponding to a valid RoadRunner export format. Format name options are
case-insensitive. RoadRunner only supports ASAM OpenSCENARIO format.
Example: While calling
exportScenario(rrApp,"FourWaySignal.xosc","OpenSCENARIO",options),
OpenSCENARIO specifies that the file will be exported to ASAM OpenSCENARIO format.
Data Types: char | string

exportoptions — Export options configuration
exportoptions object

Export options configuration, specified as one of the export options objects compatible with the
format name specified in the formatname argument. This argument specifies the options that can be
used with export. Only openScenarioExportOptions object is supported.

 exportScenario

4-5



Export Format Options
Object

Description Properties

openScenarioExportOption
s

Specifies options for exporting
RoadRunner scene and scenario
to ASAM OpenSCENARIO.

openScenarioExportOption
s (Name=Value) creates an
export options configuration
object for the ASAM
OpenSCENARIO format with
properties specified as one or
more name-value arguments. If
a default property value is
"auto", the RoadRunner
application determines what
value to use and sets the
property to that value.

SceneGraphF
ormatName

Format of
scene graph
file to export,
specified as a
string or
character
vector. Only
OpenSceneGra
ph format is
supported.
Specify this
option to
export a new
scene graph
file for the
scenario. To
reuse an
existing scene
graph file,
specify the file
in the
SceneGraphF
ileName
property.

Default:
"auto"

SceneGraphF
ileName

Name of
previously
exported scene
graph file,
specified as a
string or
character
vector. Specify
this option to
reuse an
existing scene,
which can
speed up the
export process.
If
SceneGraphF
ormatName is
specified, then
this property is
ignored and a
new scene

4 Objects

4-6



Export Format Options
Object

Description Properties

graph file is
generated.

Default:
"auto"

OpenSceneGr
aphOptions

Export options
for the
OpenSceneGra
ph file,
specified as an
openScenari
oExportOpti
ons object.

Default:
"auto"

OpenDriveOp
tions

Export options
for the ASAM
OpenDRIVE®

file, specified
as an
openDriveEx
portOptions
object.

Default:
"auto".

Example: options =
openScenarioExportOption
s(OpenDriveOptions =
openDriveExportOptions(E
xportObjects=true));

Data Types: char | string

Version History
Introduced in R2022a

See Also
roadrunner | importScenario | openScenario | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

 exportScenario

4-7



getScenarioVariable
Get the value of RoadRunner scenario variable using MATLAB

Syntax
value = getScenarioVariable(rrApp,name)

Description
value = getScenarioVariable(rrApp,name) returns the value of a variable in the current
scenario with the specified name.

Examples

Get Scenario Variable

Get a scenario variable in RoadRunner Scenario using MATLAB.

Call the roadrunner function and pass in the location where you want to create the project. This
example assumes that RoadRunner is installed in its default location in Windows.

Specify the path to an existing project. For example, this code shows the path to a project located at
"C:\RR\MyProject". This call returns an object rrApp that provides functions for performing basic
workflow tasks such as opening, closing, and saving scenes and projects

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open an existing scenario in RoadRunner Scenario by calling the openScenario function and
passing it the rrApp object and the specific scenario filename that you want to open. This call
opens the desired scenario in the RoadRunner Scenario application through MATLAB.

filename = "MyScenario.rrscenario";
openScenario(rrApp,filename);

Get the value of a scenario variable. Call the getScenarioVariable function and pass it the rrApp
object and the variable whose value you want to retrieve. For example, this call retrieves a value of
17.88 as the initial speed of the Ambulance in the scenario, MyScenario. This example has an
exisiting variable, Ambulance_InitialSpeed.

name = "Ambulance_InitialSpeed";
value = getScenarioVariable(rrApp,name);

Input Arguments
rrApp — RoadRunner application
roadrunner object

4 Objects

4-8



RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

name — Name of variable to retrieve value
character vector | string scalar

Name of variable to retrieve value, specified as a character vector or string scalar. If the specified
variable does not exist in the scenario, it results in an error. For more details on creating variables in
a scenario, see “Generate Scenario Variations”.
Example: getScenarioVariable(rrApp,"Ambulance_InitialSpeed); retrieves the initial
speed of the Ambulance vehicle.

Output Arguments
value — Value assigned to variable
character vector | string scalar

Value assigned to variable, returned as a character vector or string scalar.
Example: getScenarioVariable(rrApp,"Ambulance_InitialSpeed"); retrieves the initial
speed as 17.88 m/s assigned of the Ambulance vehicle.

Version History
Introduced in R2022a

See Also
roadrunner | setScenarioVariable | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

 getScenarioVariable

4-9



importScenario
Import file into RoadRunner Scenario using MATLAB

Syntax
importScenario(rrApp,filename,formatname)
importScenario(rrApp,filename,formatname,importoptions)

Description
importScenario(rrApp,filename,formatname) imports a file that is in a format that
RoadRunner supports into the currently opened scenario.

importScenario(rrApp,filename,formatname,importoptions) sets options for import using
importoptions argument. You can import only ASAM OpenSCENARIO files.

Examples

Import Scenario

Import a scenario in RoadRunner Scenario using MATLAB.

Call the roadrunner function and pass in the location where you want to create the project. This
example assumes that RoadRunner is installed in its default location in Windows.

Specify the path to an existing project. For example, this code shows the path to a project located at
"C:\RR\MyProject". This call returns an object rrApp that provides functions for performing basic
workflow tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open a new scenario in the current project by calling the newScenario function and passing it the
rrApp object. This call opens a blank scenario in the currently opened project.

newScenario(rrApp);

Before importing the ASAM OpenSCENARIO® file, set import options by creating an
openScenarioImportOptions object to enable import of signals from the file.

options = openScenarioImportOptions(OpenDriveOptions = openDriveImportOptions(ImportSignals=true));

Call the importScenario function and pass the rrApp object, the filename, and the options object
as input arguments. This function call imports data from the specified filename into the currently
opened scenario.

filename = "C:\RR\MyProject\Assets\FourWaySignal.xosc";
formatname = "OpenSCENARIO";
importScenario(rrApp,filename,formatname,options);

4 Objects

4-10



Input Arguments
rrApp — RoadRunner application
roadrunner object

RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

filename — Path of file which is to be imported
character vector | string scalar

Path of file which is to be imported, specified as a character vector or string scalar. filename is
absolute or relative path to the file to be imported. If you specify a relative path, then you must
specify a path to a file in the Assets folder of the current project.
Example: While calling importScenario(rrApp,"C:\RR\MyProject\Assets
\FourWaySignal.xosc","OpenSCENARIO",importoptions), "C:\RR\MyProject\Assets
\FourWaySignal.xosc" represents the file path of the file to be imported, which is relative to the
Assets folder of the current project.
Data Types: char | string

formatname — Import format name
character vector | string scalar

Import format name, specified as a character vector or string scalar. This argument specifies the
format name corresponding to a valid import format that RoadRunner supports. Format name options
are case-insensitive. You can import only ASAM OpenSCENARIO files.
Example: While calling importScenario(rrApp,"C:\RR\MyProject\Assets
\FourWaySignal.xosc","OpenSCENARIO",importoptions), OpenSCENARIO specifies that the
file will be imported to ASAM OpenSCENARIO format.
Data Types: char | string

importoptions — Import options configuration
openScenarioImportOptions object

Import options configuration, specified as openScenarioImportOptions object compatible with
the file specified in the filename argument. Only openScenarioImportOptions object for ASAM
OpenSCENARIO file is supported.

 importScenario

4-11



Import Format Options
Object

Description Properties

openScenarioImportOption
s

Specifies options for importing
ASAM OpenSCENARIO file into
RoadRunner scenario.

openScenarioImportOption
s (Name=Value) creates an
import options configuration
object for the ASAM
OpenSCENARIO format with
properties specified as one or
more name-value arguments. If
a default property value is
"auto", the RoadRunner
application determines what
value to use and sets the
property to that value.

OpenDriveOp
tions

Options to
import an
ASAM
OpenDRIVE
file, specified
as an
openDriveIm
portOptions
object.

Default:
"auto".

Example: options =
openScenarioImportOption
s(OpenDriveOptions =
openDriveImportOptions(I
mportSignals=true));

Data Types: char | string

Version History
Introduced in R2022a

See Also
roadrunner | exportScenario | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

4 Objects

4-12



newScenario
Create new scenario in RoadRunner Scenario using MATLAB

Syntax
newScenario(rrApp)

Description
newScenario(rrApp) creates a new scenario in the current RoadRunner scene. You must create or
load a new scene before creating a new scenario.

Examples

Create New RoadRunner Scenario

Create a new scenario in RoadRunner Scenario using MATLAB.

Start RoadRunner and open the project called "C:\RR\MyProject".Return the RoadRunner
application object in rrApp. This example assumes that RoadRunner is installed in its default location
in Windows. This call returns an object rrApp that provides functions for performing basic workflow
tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open an existing scene in RoadRunner. For example, open the FourWaySignal scene, which is one
of the scenes included by default in RoadRunner projects.

filename = "FourWaySignal.rrscene";
openScene(rrApp,filename);

Create a new, empty scenario in the scene using the newSenario function.

newScenario(rrApp);

Input Arguments
rrApp — RoadRunner application
roadrunner object

RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

 newScenario

4-13



Version History
Introduced in R2022a

See Also
roadrunner | openScenario | saveScenario | openScene | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

4 Objects

4-14



openScenario
Open scenario in RoadRunner Scenario using MATLAB

Syntax
openScenario(rrApp,filename)
openScenario(rrApp,filename,keepCurrentScene)

Description
openScenario(rrApp,filename) opens the specified scenario in the RoadRunner scene in which
it was previously saved. If no current scene is specified in the project, MATLAB returns an error.

openScenario(rrApp,filename,keepCurrentScene) specifies whether to open the specified
scenario in the scene it was previously saved with or in the current scene, regardless of which scene
it was previously saved with.

Examples

Open Scenario

Open a scenario in RoadRunner Scenario using MATLAB.

Start RoadRunner and open the project called "C:\RR\MyProject".Return the RoadRunner
application object in rrApp. This example assumes that RoadRunner is installed in its default location
in Windows. This call returns an object rrApp that provides functions for performing basic workflow
tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open an existing scenario in RoadRunner Scenario by calling the openScenario function and
passing it the rrApp object and the specific scenario filename that you want to open. This call
opens the desired scenario in the RoadRunner Scenario application through MATLAB.

filename = "MyScenario.rrscenario";
openScenario(rrApp,filename);

Input Arguments
rrApp — RoadRunner application
roadrunner object

RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

 openScenario

4-15



filename — RoadRunner scenario file name
character vector | string scalar

RoadRunner scenario file name, specified as a character vector or string scalar. If you specify this
argument as a relative path, then the path is relative to the Scenarios folder of the current project.
filename must end with either the .rrscenario extension or have no extension. If it has no
extension, then RoadRunner appends the .rrscenario extension to filename before opening the
scenario.
Example: openScenario(rrApp,"MyScenario.rrscenario") opens MyScenario.rrscenario
from the Scenarios folder of the current project.
Data Types: char | string

keepCurrentScene — Open scenario in current scene
false or 0 (default) | true or 1

Open scenario in current scene, specified as a numeric or logical 0 (false) or 1 (true). If you set
keepCurrentScene to true and there is no current scene, then MATLAB returns an error. If you set
keepCurrentScene to false, then RoadRunner opens the scene that the scenario was previously
saved with and opens the scenario into that scene.
Data Types: logical

Version History
Introduced in R2022a

See Also
roadrunner | newScenario | saveScenario | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

4 Objects

4-16



remapAnchor
Remap road anchor in RoadRunner Scenario in MATLAB

Syntax
remapAnchor(rrApp,source,target)
remapAnchor(rrApp,source,target,NewAnchorName=newName)

Description
remapAnchor(rrApp,source,target) remaps dependencies from a source anchor in the scenario
to a different target road anchor. You can specify the name of the source anchor and the name or
position of the target anchor.

remapAnchor(rrApp,source,target,NewAnchorName=newName) also sets the name of the
target anchor when the target is specified as a position.

Examples

Remap Anchors in a Scenario

Remap road anchor to a target anchor

Open a project in RoadRunner using the roadrunner function by specifying the location in which to
create a project. This example assumes that RoadRunner is installed in its default location in
Windows.

Specify the path to an existing project. For example, this code shows the path to a project located on
C:\RR\MyProject. The function returns a roadrunner object, rrApp, that provides functions for
performing basic workflow tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder, InstallationFolder='C:\Program Files\RoadRunner R2022b\bin\win64');

Open an existing scenario in RoadRunner Scenario by calling the openScenario function and
passing it the rrApp object and the specific scenario filename that you want to open. This call
opens the desired scenario in the RoadRunner Scenario application through MATLAB.

filename = "TrajectoryCutIn.rrscenario";
openScenario(rrApp,filename);

Remap the source anchor to the target anchor by calling the remapAnchor function and passing it
the rrApp object and the source anchor name, the target anchor name and the new anchor name.

remapAnchor(rrApp,"ScenarioStart",[-20 0 0],NewAnchorName="anchor3");

 remapAnchor

4-17



Input Arguments
rrApp — RoadRunner application
roadrunner object

RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

source — Source anchor in scenario
character vector | string scalar

Source anchor in scenario, specified as a character vector or string scalar.

target — Target anchor in scenario
character vector | string scalar | three-element numeric vector

Target anchor in scenario, specified as one of these values.

• A character vector or string scalar indicating the name of the target anchor. A name remap
searches for a road anchor with matching name in the scenario and scene.

• A three-element numeric vector indicating the position of the target anchor relative to the center
of the scene. A position remap creates a new road anchor on the road closest to the provided
position. The distance between this position and the closest road in the scene must be greater
than 25 meters.

newName — New anchor name for position remap
"" (default) | character vector | string scalar

New anchor name for a position remap, specified as a character vector or string scalar. If the value is
not specified, the remapAnchor function uses the default value.

Version History
Introduced in R2022b

See Also
roadrunner | getScenarioVariable

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

4 Objects

4-18



saveScenario
Save scenario in RoadRunner Scenario using MATLAB

Syntax
saveScenario(rrApp)
saveScenario(rrApp,filename)

Description
saveScenario(rrApp) saves the current scenario.

saveScenario(rrApp,filename) saves the current scenario to the specified file filename.
RoadRunner also saves the current scene and project.

Examples

Save Scenario

Save a scenario in RoadRunner Scenario using MATLAB.

Start RoadRunner and open the project called "C:\RR\MyProject".Return the RoadRunner
application object in rrApp. This example assumes that RoadRunner is installed in its default location
in Windows. This call returns an object rrApp that provides functions for performing basic workflow
tasks such as opening, closing, and saving scenes and projects.

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open an existing scenario in RoadRunner Scenario by calling the openScenario function and
passing it the rrApp object and the specific scenario filename that you want to open. This call
opens the desired scenario in the RoadRunner Scenario application through MATLAB.

filename = "MyScenario.rrscenario";
openScenario(rrApp,filename);

Save the scenario to another file. Call the saveScenario function and pass it the rrApp object and
the new filename with which you want to save the scenario. This call saves the scenario, the current
scene and the project.

newFilename = "MyScenario1.rrscenario";
saveScenario(rrApp,newFilename);

Input Arguments
rrApp — RoadRunner application
roadrunner object

 saveScenario

4-19



RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

filename — RoadRunner scenario file name
character vector | string scalar

RoadRunner scenario file name, specified as a character vector or string scalar. If you specify this
argument as a relative path, then the path is relative to the Scenarios folder of the current project.
If you do not specify filename, then RoadRunner saves the current scenario to its existing file. If you
do not have a current scenario open, then RoadRunner returns an error. RoadRunner recursively
creates any folders on the specified file path that do not already exist.

filename must end with .rrscenario extension or have no extension. If it has no extension, then
RoadRunner appends the .rrscenario extension to the file name before saving the scenario. If the
file being saved already exists, then RoadRunner overwrites it.
Example: saveScenario(rrApp,"MyScenario1.rrscenario") saves the current open scenario
to the MyScenario1.rrscenario file in to the Scenarios folder of the current project.
Data Types: char | string

Version History
Introduced in R2022a

See Also
roadrunner | newScenario | openScenario | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

4 Objects

4-20



setScenarioVariable
Set RoadRunner scenario variable using MATLAB

Syntax
setScenarioVariable(rrApp,name,value)

Description
setScenarioVariable(rrApp,name,value) sets a specified variable in the current scenario to
the specified value.

Examples

Set Scenario Variable

Set a scenario variable in RoadRunner Scenario using MATLAB.

Call the roadrunner function and pass in the location where you want to create the project. This
example assumes that RoadRunner is installed in its default location in Windows.

Specify the path to an existing project. For example, this code shows the path to a project located at
"C:\RR\MyProject". This call returns an object rrApp that provides functions for performing basic
workflow tasks such as opening, closing, and saving scenes and projects

projectFolder = "C:\RR\MyProject";
rrApp = roadrunner(projectFolder);

Open an existing scenario in RoadRunner Scenario by calling the openScenario function and
passing it the rrApp object and the specific scenario filename that you want to open. This call
opens the desired scenario in the RoadRunner Scenario application through MATLAB.

filename = "MyScenario.rrscenario";
openScenario(rrApp,filename);

Set the value of a scenario variable. Call the setScenarioVariable function and pass it the rrApp
object, the variable whose value you want to set, and the value that you want to assign to the
variable. For example, this call assigns a value of 17.88 as the initial speed of the Ambulance in the
scenario, MyScenario.

name = "Ambulance_InitialSpeed";
value = "17.88";
setScenarioVariable(rrApp,name,value);

Input Arguments
rrApp — RoadRunner application
roadrunner object

 setScenarioVariable

4-21



RoadRunner application associated with a project, specified as a roadrunner object. This object
provides functions for performing common workflow tasks such as opening, closing, and saving
scenes and projects. rrApp provides functions that support importing data from files and exporting
scenes to other formats from RoadRunner.

name — Name of variable to set
character vector | string scalar

Name of variable to set, specified as a character vector or string scalar. If the specified variable does
not exist in the scenario, it results in an error. For more details on creating variables in a scenario,
see “Generate Scenario Variations”.
Example: setScenarioVariable(rrApp,"Ambulance_InitialSpeed","17.88"); sets the
initial speed of the Ambulance vehicle.

value — Value assigned to variable
character vector | string scalar

Value assigned to variable, specified as a character vector or string scalar. This argument specifies
the new value to assign to the variable. Even if the variable value is numeric, you must specify value
as a character vector or string scalar.
Example: setScenarioVariable(rrApp,"Ambulance_InitialSpeed","17.88"); sets the
initial speed of the Ambulance to 17.88 m/s.

Version History
Introduced in R2022a

See Also
roadrunner | getScenarioVariable | close

Topics
“RoadRunner Scenario Fundamentals”
“Simulate a RoadRunner Scenario Using MATLAB Functions”

4 Objects

4-22



Configurations

5



Simulation Configuration
Specify simulation constants, timeout values, and cosimulation platform parameters

RoadRunner Scenario specifies simulation settings in an XML configuration file,
SimulationConfiguration.xml.

With the configuration file, you can modify the properties of the simulation and the MATLAB and
RoadRunner Scenario cosimulation bridge. These are the default paths for this configuration file on
Windows® and Linux:

• Windows — C:\Users\username\AppData\Roaming\MathWorks\RoadRunner\R20NNx
\Scenario\Config\

• Linux — ~/.local/share/MathWorks/RoadRunner/R20NNx/Scenario/Config/

username is your Windows user ID. R20NNx is the version of MATLAB you currently have installed.

Note Modifying the SimulationConfiguration.xml requires that you restart RoadRunner
Scenario to apply the changes.

Parameters
Timeout Values

These are the default timeout values used by the gRPC server for each event type, specified in
milliseconds.

Event Type Timeout Value
SimulationStartEvent 30000
SimulationStepEvent 6000
SimulationPostStepEvent 6000
SimulationStopEvent 6000
CreateActorEvent 60000
DestroyActorEvent 10000

If the client proposes a timeout value in its profile attribute, then the greater of the proposed value
and value in this table is used. The minimum timeout value on the RoadRunner Scenario server side
is 2000 ms; any lower value is equated to 2000 ms by the server.

If you set a timeout value using the MATLAB settings function, then for each event type, the
greater of the proposed value and value in this table is used. For example, if you set the timeout as 10
seconds through the settings function, then the timeout for SimulationStartEvent remains 30
seconds. However, the timeout values for SimulationStepEvent, SimulationPostStepEvent,
and SimulationStopEvent increase from six seconds to 10 seconds.

5 Configurations

5-2



Network Ports

Port — Scenario Simulation gRPC server network port
35706 (default) | positive integer in range [1024, 65535]

Network port the Scenario Simulation gRPC server listens to.
Example: <Port name="ScenarioServer" value="35706"/>
Data Types: double

Co-Simulation Platforms

Platform — Platform name
MATLAB | CARLA

Name of the platform executable.

ExecutablePath — Full path to platform executable
string scalar

Full path to the platform executable.
Example: <ExecutablePath>C:\Program Files\MATLAB\R2022a\matlab\bin\matlab.exe</
ExecutablePath>

StartTimeOut — Wait time for platform launch
nonnegative integer scalar

The duration RoadRunner will wait in millisecond to launch the platform
Example: <StartTimeOut>60000</StartTimeOut>

NoDesktop — Launch MATLAB in without desktop
true (default) | false

Open MATLAB in no desktop mode.
Example: <NoDesktop>true</NoDesktop>

Simulation Constants

AlignmentAngleThreshold — Threshold angle to determine a vehicle's alignment on a lane
0.8028514559 (default) | positive scalar

Threshold angle to determine a the alignment of a vehicle in a lane, by comparing the angle formed
from the vehicle heading and the lane tangent evaluated at the vehicle map location using this rule:

• Forward — angle < AlignmentAngleThreshold
• Backward — angle > pi – AlignmentAngleThreshold
• Not Aligned — AlignmentAngleThreshold <= angle <= pi –

AlignmentAngleThreshold

Example: <Parameter name="AlignmentAngleThreshold" value="0.8028514559"/>
Data Types: double

 Simulation Configuration

5-3



LaneChangeActionActorAngleThreshold — Threshold angle to determine completion of a
lane change action
0.0349 (default) | positive scalar

Threshold angle to determine the completion of a lane change action, by enforcing the vehicle
heading to strictly align against the lane tangent evaluated at the vehicle map location.
Example: <Parameter name="LaneChangeActionActorAngleThreshold" value="0.0349"/>
Data Types: double

MaxSearchDistance — Maximum longitudinal distance for vehicle lane adjacency search
500 (default) | positive scalar

Maximum longitudinal distance used to search for the lane adjacency between two vehicles.
Example: <Parameter name="MaxSearchDistance" value="500"/>
Data Types: double

LateralOffsetComparisonTolerance — Tolerance to compare vehicle lateral offset
0.001 (default) | positive scalar

Tolerance, specified in meters, used when comparing the lateral offset of a vehicle to its desired
value.
Example: <Parameter name="LateralOffsetComparisonTolerance" value="0.001"/>
Data Types: double

LaneMappingHeightTolerance — Tolerance to compare vehicle lateral offset
0.5 (default) | positive scalar

Tolerance, specified in meters, used when comparing the projected distance of a vehicle onto an on-
lane candidate against the vehicle chassis height. This tolerance value is used for lane mapping, and
is intended to narrow down the on-lane map locations for a multilayer, overlapping road network.
Example: <Parameter name="LaneMappingHeightTolerance" value="0.5"/>
Data Types: double

SpeedComparisonTolerance — Tolerance to compare vehicle speed against goal
0.1 (default) | positive scalar

Tolerance, specified in meters per second, used when comparing the speed of a vehicle to its goal
speed or to the speed of another vehicle.
Example: <Parameter name="SpeedComparisonTolerance" value="0.1"/>
Data Types: double

MaxSimulationTime — Maximum time allowed per simulation
1000 (default) | positive integer

Maximum time, in seconds, to allow a simulation to run.
Example: <Parameter name="SpeedComparisonTolerance" value="0.1"/>
Data Types: uint64

5 Configurations

5-4



SimulationStepSize — Simulation time update step size
0.02 (default) | positive scalar

The step size, in seconds, used to update the simulation.
Example: <Parameter name="SimulationStepSize" value="0.02"/>
Data Types: double

SimulationPacing — Simulation time pacing relative to real time
1 (default) | positive scalar

By default, the time step of the simulation pipeline tries to keep pace with the real world time. For
example 0.01 seconds of simulation time occurs in 0.01 seconds in the real world. Simulation pacing
enables the simulation time steps to occur either faster or slower than real world time. The rendering
pipeline always updates at 60 frames per second (FPS). The impact of this parameter on the relative
pacing between the simulation and real world time differs depending on its value.

• Less than one — The simulation runs slower than real-time, a value of 0.5 would be 0.5x real-
time.

Note When the SimulationPacing is less than one, frames can be rendered twice, due to the
rendering pipeline running more frequently than the simulation pipeline. This appears as jitter in
the visualization.

• Equal to one — The simulation runs in real-time, at 60 FPS.
• Greater than one — The simulation runs faster than real-time. For example, a value of 2 would be

2x real-time.

Example: <Parameter name="SimulationPacing" value="1">
Data Types: double

Version History
Introduced in R2022a

See Also

 Simulation Configuration

5-5




	Tools
	Scenario Edit Tool
	Simulation Tool
	Route Timing Tool

	Assets
	Vehicle Assets
	Character Assets

	Functions
	NewScenario
	LoadScenario
	SaveScenario
	GetScenarioVariable
	SetScenarioVariable
	PrepareSimulation
	SimulateScenario

	Objects
	createSimulation
	exportScenario
	getScenarioVariable
	importScenario
	newScenario
	openScenario
	remapAnchor
	saveScenario
	setScenarioVariable

	Configurations
	Simulation Configuration


